Tag: battery

  • New Axle Improves Electric Car Range

    New Axle Improves Electric Car Range

    Incredible simplicity. One experiment shows how increasing the range of electric automobiles may be achieved simply by altering the rear axle. There, a novel rear axle design for compact electric vehicles’ batteries is introduced. Due to its newfound rearward positioning, bigger battery plates can be placed, thus increasing the range of electric vehicles to around 71 miles (115 km). And the first stages of discussion with automakers have begun.


    In the context of transportation, electromobility is seen as a crucial foundational element.


    However, electric vehicles have not been widely adopted thus far. Smaller, less priced electric vehicle models have a shorter range, which is a major factor in this, along with the shortage of charging stations and lengthy charging durations. Smaller batteries and in-car charging technologies are now being developed by scientists, however, they are still in the research and development stage and hence prohibitively expensive.

    Better battery storage

    Researchers led by Xiangfan Fang are showing, however, that this need not be that complicated. They have been working with Ford, VW, and other project partners to find easy solutions to provide extra room for the vehicle’s battery. This is due to the fact that, in the case of compact electric vehicles, space constraints for battery packs are a major factor in determining performance and driving range. Since the space for the battery packs is constrained by the back axle, that’s where the team’s attention was directed.

    Turning the rear axle around shifted the cross member of the axle back toward the trunk, which was the basic rationale of the study. Since more room is created beneath the vehicle, the battery could be placed closer to the front. The vehicles’ range has been increased by 35 percent, or around 71 miles (115 km), thanks to the revised design of the rear axle.

    Vehicle performance criteria

    It was necessary for the vehicle engineers in the study to make further changes to the rear axle to keep the car’s driving characteristics unchanged. The engineers initially created the new axle digitally and incorporated it virtually into the body to exactly calculate and replicate its characteristics. The first steel axle prototype was made using this approach.


    The new electric vehicle’s rear axle has many joints that guarantee, among other things, that the car performs properly during braking and does not rise up at the back. The next stage was to put the prototype axle in a test vehicle, a Ford Fiesta. Heavier metal plates were installed beneath the floor of the gas-powered vehicle to represent the weight of the battery.

    Discussions with automakers are now ongoing

    The vehicle was then fitted with sophisticated measuring equipment and put through its paces on a test bench and a track in Belgium by industry professionals. As a consequence, the vehicle’s safety and convenience were not compromised too much by the altered rear axle. The test vehicle was somewhat less dynamic than vehicles with standard rear axles in several respects. However, the gap is so narrow that fine-tuning should be able to iron it out.

    The team is now working on refining the new axle idea. Meanwhile, discussions are under progress with several manufacturers to make the rear axle a regular feature of compact electric vehicles. In a few years, they’d be overjoyed to see electric automobiles rolling about with their axle powering them.

  • Underwater Camera Without Battery or Cable

    Underwater Camera Without Battery or Cable

    Using water as a source of energy, scientists in the United States have developed a tiny camera capable of taking photographs underwater without the need for recharging or any other maintenance. The gadget is able to do this because of piezo elements, which transform the energy in water vibrations into electricity, and its low power consumption compared to traditional cameras. It uses a passive method of data transmission in which it backscatters an incoming sound wave.

    A very small percentage of the oceans have yet to be surveyed and investigated. There hasn’t been much progress made in this area, even after massive censuses like the Census of Marine Life were conducted. The challenge of putting several sensors and cameras in the water without an external power source is a contributing factor. To date, such equipment has relied on either batteries, which have a finite lifespan, or cables from ships, which can only provide power for a limited duration.

    Potential energy from vibrations

    Underwater camera without battery or cable 1
    The underwater camera’s construction without a battery or cable. (Afzal et al./Nature Communications, CC-BY 4.0)

    But now, MIT graduate student Sayed Saad Afzal and his colleagues have developed an underwater camera that doesn’t need any external power source to operate. There are two technologies that work together to make this happen. The first is the use of piezoelectric elements, which can transform mechanical vibrations into electricity. This is achieved by shifting charges in the element generated by the vibrations.

    Now, a ship’s horn, a marine mammal’s snort, or even a sonar may cause the water to vibrate and, therefore, strike the piezoelectric transducer, producing electrical energy that can charge a tiny supercapacitor. The camera is powered by this current. Unfortunately, regular color cameras aren’t very power-efficient; therefore, particular consideration was given to this aspect of the design.

    Image captured by a monochrome camera sensor

    Underwater camera without battery or cable 2
    The battery-free camera prototype’s first shots. (Afzal et al./Nature Communications, CC-BY 4.0

    The researchers had to be creative to reduce the hardware footprint as much as feasible. Color photos were preferred, but the most cost-effective digital image sensors only create monochrome (black and white) photos. To see anything at all in the dim underwater environment, the camera has to be able to shine a light on its targets, which also demands electricity.

    The researchers solved this issue by integrating a black-and-white image sensor with red, green, and blue light-emitting diodes. The sensor takes one picture of an item as each of the three colored LEDs lights up in succession. The three monochrome pictures are distinct from one another because the color elements are absorbed and reflected differently depending on the color of the object. Recombining them using specialized software allows for the recreation of a full-color picture, conceptually analogous to that of an LED television.

    Backscattering is used to send information

    The data transfer from the underwater camera to the ocean surface was another obstacle that needed to be addressed. The team at MIT employed a method that has already been used in battery-free mobile phones and LED billboards. The new camera uses backscatter technology, which encrypts its data by absorbing or reflecting an acoustic signal aimed at it, rather than actively creating radio waves or other signals to transport the data.

    The camera is then radioed by the receiver (which can be a buoy floating on the water’s surface) to the depths below. The zeroes and ones of digital image data are imprinted on the signal by the camera’s piezoelectric module, which reflects the signal back for 0 and absorbs it for 1. The reflected signal can be picked up by the receiver buoy’s submerged microphone and decoded.

    A single switch is all that’s needed to toggle between absorption and reflection in this setup. The underwater camera without battery or cable consumes just one-hundred-thousandth of the power required by conventional submerged communication systems.

    Successful results from the first round of testing

    Initial field testing of the scientists’ new battery-free camera included using it to document the plastic debris lying at the pond’s bottom. High-resolution photographs of a starfish were captured, and the camera also caught the development of the aquatic plant Aponogeton ulvaceus over the course of a week. All of these evaluations were carried out with the prototype camera fully underwater, functioning independently, and without a battery or power cord.

    Researchers think that autonomous and low-cost underwater cameras will open up new avenues for studying the ocean. In addition to monitoring fish in aquaculture, they might be used to investigate marine pollution and look at uncommon species. The researchers are already working on increasing the battery-less camera’s storage capacity and range (which is now just 130 feet or 40 meters) so that it can be used in such applications. Source: Nature Communications, 2022; doi: 10.1038/s41467-022-33223-x.