Because Europa, Jupiter’s moon, is thought to conceal an ocean of liquid water under its icy cover, it may be home to intelligent life from outside our solar system. Europa is perhaps more intriguing than any other moon in the galaxy. The frigid moon may be more habitable than previously believed. Europa, the ice moon, seems frigid and frightening at first view. However, it is misleading. Because there is a massive ocean of liquid water under its crust, providing possible conditions for life. Scientists have been slowly digging into the question of whether or not life exists on Europa in recent years. The outcome of which might be unexpected.
Ocean below Europa’s ice
Jovian satellite Europa is strangely beautiful, with a network of furrows that stretch for miles over its icy surface. These furrows resemble the cracks in a painting. However, this stunning scenery comes at a high cost, since no form of life could survive the -240°F (-150°C) temperatures, solid ice crust, and complete absence of air.
A secret habitat
However, at depths of 6 to 9 miles (10 to 15 km), a whole other universe opens up. Here lies a vast ocean of salt water that wraps around Europa and is likely to be at least 60 miles (100 km) deep. This ocean may hold twice as much water as all the seas on Earth combined.
Again, details about this watery supermassive planet were gleaned through Galileo probe magnetic field data. Because it also picked up telltale abnormalities in Jupiter’s magnetic field surrounding Europa, the kind of disturbances usually caused by motions of conductive fluid. A magma ocean is unlikely on Europa since the moon is entirely covered in ice and, unlike Io, has no solid crust to keep the heat in. A subglacial sea of liquid salt water, on the other hand, would be conductive but also allow ice crusts to exist.
Overwhelming tidal forces by Jupiter
The key question, though, is: what exactly is it that keeps the water liquid under the ice in Europa? Tidal forces from Jupiter are a likely cause. Europa’s orbit is very elliptical and somewhat eccentric around its host planet. Because of this, the strength of Jupiter’s gravitational attraction varies throughout the orbit. Thus, the interior of Europa varies according to how squeezed it is by Jupiter at a given moment.
There is a little elliptical deformation of the whole moon when Jupiter is near enough to cause the ice, water, and rock on the side facing it to rise. However, when Europa migrates away from Jupiter, its form once again becomes roughly spherical. These continuous motions produce heat through subsurface friction, which may be sufficient to maintain a liquid water layer under the ice of Europa.
Europa’s cracks and their meaning
When did the cracks start taking on such a peculiar form?
Europa’s ice crust is so stiff that it cannot adapt to the movement and fissures caused by the subglacial ocean’s continual ups and downs. Images taken by the Galileo spacecraft reveal a fascinating pattern of elongated trenches and furrows formed by these fissures. Water from the ocean rises to the surface at these fissures regularly and solidifies, thus, causing the darker hue of the lines.
Mysterious directional shifts in the fractures
But there’s something off about these lines. It’s unclear why these fractures have changed direction over time. Since Jupiter’s moon rotates in a tidal lock with the planet, the tidal pressures are always exerted in the same direction. Then why are the cracks not constantly forming in the same direction?
There are theoretically three potential causes: To begin, Europa’s icy crust may revolve a little faster than the rest of the moon. As a result, Jupiter’s tidal forces would gradually shift the crust’s orientation relative to the planet over time. Another idea is that, like Earth’s axis of rotation, Europa’s is somewhat inclined relative to its orbital motion. As a result, Europa would wobble more over time, and its crustal areas would alternately begin to draw closer to Jupiter.
A third prospect is that the fractures are scattered at random and that their direction is not related to lunar activities but could be related to local weak points in the ice sheet.
Europa’s wobbling axis
But this crust hypothesis came up on the losing end, with the models based on this scenario consistently failing to reproduce Europa’s usual cracking pattern. However, if the simulations were modified in a way that Europa’s axis swung back and forth by around 1 degree over time, the results would get quite similar to the fracture pattern seen in the ice crust, suggesting that the wobbling axis is more likely the reason for the directional changes in Europa’s fractures and ridges. Even a little axial tilt (or obliquity) accounts for a lot of this current phenomenon on Europa.
Liquid water under Europa’s ice sheet
The usual breaking pattern of the ice crust may have been caused by Europa’s mild tumbling, which may also have led to the creation of a subglacial ocean. That’s because the heating impact of tidal forces can be amplified even by tiny variations in Europa’s orientation with regard to Jupiter.
Some scientists think that the subglacial ocean in Europa is continually sloshing back and forth under the unyielding crust due to the ice moon’s wobbling. Instead of being relatively motionless, the water would be marked by powerful currents. Also, the energy released by the motion of the water might be enough to keep Europa’s ocean liquid. Thus, the liquid water on Europa could be heated by the ocean itself, not by the surface or the subsurface. But, this is still only a theory at this point.
The possibility of life on Europa
Organisms under the ice
If water exists as a liquid on Europa, then there might be life on this icy moon of Jupiter. But there is more to it when it comes to subglacial lakes or seas. For thriving and reproducing, most organisms need either light or air, or at least certain gases. That’s why, for a long time, it was believed that the subterranean lakes of Antarctica were fairly unfriendly to life. But that didn’t turn out to be true.
Proof of life on Lake Vostok
Lake Vostok, the biggest subglacial lake in the Antarctic on Earth has always been frozen solid. Having been covered by ice almost 2 miles (3 km) thick for the last 15 million years, its waters have been cut off from the surface. No light can make it through this ice sheet, the air pressure is very high, and food is probably in short supply. It’s undeniable that species on Earth that call Lake Vostok home must thrive under very harsh circumstances.
No samples of the lake’s liquid had been obtained due to concerns about contamination, so it was unclear whether or not there were organisms living in the waters of Vostok. However, in recent years, scientists have drilled just above the water level, collecting the first samples of frozen lake water from the boundary layer. This layer forms when the lake water freezes at the points of contact with the glacier ice and then collects on the underside of that glacier ice.
Incredible variety
The samples at depths of around 11,700 to 11,900 ft (3,550 to 3,600 m) came from the ice formed by the lake water and when the samples were studied, the scientists deciphered the DNA and RNA sequences frozen in the ice to discover the kind of species living in the Lake Vostok.
What they uncovered instead of an area devoid of diversity was the DNA of thousands of species living in impossible conditions. 94% of the species were bacteria, while the remaining 6% were either fungus or archaea, a unique class of single-celled creatures. This finding has forever changed our view of what is and isn’t deemed liveable.
Evidence of higher life
What’s more, the investigations also uncovered the fact that many of the bacterial species detected in the ice are generally found in close connection with multicellular creatures. They are parasites and commensals that inhabit fish and other marine organisms such as crabs and worms. Some of the DNA samples could have even originated from these higher species.
This leads to the conclusion that there may be some complex organisms than single cells living in Lake Vostok which also suggests that life may exist on Europa’s cold surface if terrestrial creatures have colonized such purportedly hostile and severe habitats on Earth.
Europa’s ice crust is vital for possibility of life
Is it blocking life or safeguarding it?
Jupiter’s moon Europa has an ice cover that is 3,300 ft (1 km) thick, and it has a crucial role in the search for life on this icy moon. The ice cover serves as a blanket, protecting the subglacial ocean from the deadly cold of space and the lethal effects of radiation. As an added bonus, the ice crust, together with the rocky core, is likely the primary source of chemical building blocks for life. This is due to the coating of chemical compounds left on the surface of Europa’s ice sheet by meteorite strikes, radiation, and particles from Jupiter and the solar wind.
Does Europa have oxygen?
When this radiation splits the water molecules in the ice, this in theory should release oxygen into Europa’s atmosphere. These gases and liquids can as well reach the ocean below if the ice sheet is thin enough to allow them to escape through its countless fractures. Yet, this thick ice crust can still be detrimental to life. And Europa’s ice crust is not precisely a thin sheet, being at least 6 miles (10 km) in thickness.
Recent models showed that enough oxygen could make its way down to the subglacial water from the glacier surface, and it is simply a matter of how long it would take. This is because tidal pressures on Europa could be causing the ice crust to shift and break apart on a regular basis, sending new, frozen ice to the top while pushing other sections of the surface layer deeper into the underwater ocean.
The upheaval in Europa
Numerous new bulges and seams can be seen all throughout Europa’s surface, proving that similar upheaval processes are still happening right now. In theory, oxygen was once restricted to the atmosphere’s outermost layers in Europa. But the simulations reveal that free oxygen might have been mixed in over the full thickness of the ice crust during the span of around 1 to 2 billion years of irradiation and upheaval.
Meanwhile, similar to the underside of ice floes in our terrestrial (surface) seas, a persistent, quicker interchange of thawing and freezing happens at the boundary layer between water and ice on Europa’s icy crust. In as short as half a million years enough oxygen might have been dissolved in Europa’s ocean water during this exchange at the ice-water interface to provide minimum oxygen saturation for life.
Getting ready for life
This amount of oxygen would support life on Earth for even the smallest crustaceans. In under 12 million years, oxygen levels in Europa’s atmosphere may have risen to match those of our seas, making breathing comfortable for even the biggest aerobic organisms. If Europa had started out without oxygen for 1 or 2 billion years, that may have been the perfect amount of time for life to evolve there since this is similar to the history of Earth.
The chemically hostile oxygen wasn’t there when the original building blocks of life developed on Earth. Circumstances altered and the increasing oxygen content of the atmosphere produced the conditions for the genesis of higher life forms only after the earliest single-celled creatures had existed. The water under Europa to possibly have enough oxygen to allow for the formation of even bigger life forms is, therefore, not inconceivable.
Lakes under Europa’s ice
Chaos Terrain for clues
To what extent the ice on Europa can be penetrated is a key aspect of the survival of any life on Jupiter’s moon. Europa’s icy shell may be more permeable than previously assumed. Images taken by the Galileo probe reveal strange landscapes on Europa such as uneven ridges, cracks, and plains that appear jumbled. This topography is called “Chaos Terrain.” The planets Mars and Mercury, as well as the dwarf planet Pluto, all have Chaos Terrains.
Scientists find the ice sheet mechanisms remarkably similar to those structures. This is because similar processes occur on glaciers and ice shelves that sit above subglacial volcanoes.
Caves under Europa’s ice
It is hypothesized that Europa may have subsurface lakes, like ice-filled caverns that sit about midway between the surface and the ocean. There are many cracks in the rough topography of the Chaos Terrain formations above the lakes, which might enable abundant oxygen and organic substances to infiltrate the waters in these shallow caves in the ice.
However, this may also mean that these subglacial lakes of Europa may support life. As time goes on, these tunnels might eventually burst apart due to massive fractures in the ice, allowing for a passageway to the ocean below. Even though Europa has a strong crust, scientists can now see that it may be home to enormous shallow lakes that facilitate “mixing.” This mechanism of mixing has the potential to improve the habitability of Europa’s ocean.
Connection to the ocean under the ice
Springs of water
Image data from the Hubble Space Telescope revealed that water vapor is coming from Europa’s south pole, sometimes in gigantic springs that reach heights of over 125 miles (200 km), providing more proof of a connection between Europa’s surface and its subglacial ocean.
A blue glow
The spectrometer on the Hubble telescope picked up the faint light of excited oxygen and hydrogen atoms near the pole of Europa. In most cases, this is brought on by the disintegration of water molecules in response to a magnetic field. That implies that water vapor is present on Europa but at very low temperatures.
The moon Enceladus of Saturn is reported to experience a similar phenomenon. Geysers that are currently active here also send clouds of steam, ice, and dust hurtling into the void. However, only water vapor was found on Europa; whether the springs also include ice and dust particles is still unknown. Also, the origin of these springs remains unknown.
Connection to a hidden ocean
But do these openings reach the ocean under Europa’s ice crust? Or they might be created in the ice as a result of frictional stress close to the surface. In that case, there would be no need to delve into the subglacial ocean to learn more about its composition.
The water vapor auroras always appear when Jupiter’s moon is at the farthest point in its eccentric orbit. This phenomenon is likely caused by Jupiter’s tremendous gravitational pull and its tidal forces. Scientists believe that the large fractures and fissures on Europa’s ice are stretched farther away from the planet, allowing water vapor to escape. But as Europa returns to its orbit around Jupiter, the planet’s gravity squeezes the moon, causing the fractures to close.
Water vapor escaping near Europa’s south pole reinforces its status as a top contender for life in the Solar System. Europa’s subglacial ocean may provide favorable circumstances for the emergence of life, if it were connected to the surface.
Chemical reactions taking place in the ice of Europa
A dynamic surface
There are possibly more than simply an ocean and lakes full of liquid water under Europa’s ice crust: Deep under the ice, the chemical reactions could be occurring at a remarkable rate between the frozen objects. This is thought to be invaluable. For one thing, at -305°F to -225°F (-187°C to -143°C), chemical processes just cannot take place on their own and extra energy would be required for them to happen.
Jupiter as an energy supplier
In theory, Jupiter provides one such energy supply. There is a steady release of radiation and energetic particles into the atmosphere through its radiation belts. If they were to land on Europa, they would set off chemical reactions. Nonetheless, these particles often only go down a few millimeters into the ice. For this reason, it was widely believed that considerable chemical activity could not have persisted in the depths of Europa’s ice crust.
However, this extra energy is actually still achievable without radiation and particle flow from Jupiter. Scientists conducted experiments in a high-vacuum room cooled to 50 to 100 Kelvin (minus 223° to minus 173°C) by spraying water vapor and sulfur dioxide gas onto mirrors. Instantaneously, the vapors froze into solid ice. Previous satellite observations have confirmed the presence of sulfur in Europa’s ice, most likely from the ice volcanoes on Jupiter’s moon Io but also from Europa’s subglacial ocean. However, what happened to this sulfur thereafter was a mystery.
The -280°F reaction
The scientists then observed the changes in the reaction chamber using infrared spectroscopy. Despite the subzero temperatures, the sulfur dioxide nevertheless managed to react with the water molecules, resulting in the formation of positive and negative ions. This reaction occurred very instantly at a temperature of -225°F (-143°C). After around half a day to a day at -280°F (-173°C), the reaction reached saturation.
A day may not seem like a little amount of time, but now compare it to the age of Europa, 4.5 billion years. After all, the process in the laboratory surprisingly transformed around 30% of the sulfur dioxide. What’s more, the positive and negative ions formed in this reaction readily combined with other molecules, triggering even other reactions.
What if the crust were more dynamic than we realized?
After this, they added carbon dioxide to the mixture to see whether the process would still occur in carbon dioxide ice, simulating the circumstances on Europa. This also froze up instantly on the mirrors while not halting the continuing reaction. If the frozen carbon dioxide had prevented the reaction this whole theory would have failed.
This, however, implies that Europa’s ice, and maybe the ice of other frozen moons like Ganymede and Callisto, may be chemically active. This means the sulfur dioxide under the surface of Europa is possibly interacting and forming chemical compounds, paving the way for the possibility of life.